The Poisson Boundary of Hyperbolic Groups

نویسنده

  • Vadim A. KAIMANOVICH
چکیده

| The Poisson boundary for a wide class of random walks on Gromov hyperbolic groups is shown to coincide with the hyperbolic boundary. muni de l'action de G tel que la formule de Poisson f(g) = h b f; gi est une isom etrie de l'espace L 1 (G;) et l'espace H 1 (G;) des fonctions-harmoniques born ees sur G. Trivialit e de la fronti ere de Poisson signiie que l'espace des fonctions-harmoniques born ees ne contient que les fonctions constantes (le couple (G;) v eriie la propri et e de Liouville). La fronti ere de Poisson est triviale pour toutes mesures sur les groupes abeliens et nilpotents. Si le groupe G est moyennable, alors il existe toujours une mesure telle que le couple (G;) poss ede la propri et e de Liouville. D'autre part, si le groupe G n'est pas moyennable, alors la fronti ere de Poisson est toujours non-triviale 12]. Tout G-espace mesurable pouvant s'ecrire comme un quotient de la fronti ere de Pois-son est appel e une-fronti ere. Par d eenition, la fronti ere de Poisson est la-fronti ere maximale. Donc, le probl eme de l'identiication de la fronti ere de Poisson d'un couple (G;) consiste en deux parties. D'abord, il faut trouver (en termes g eom etriques ou combina-toires) une-fronti ere (B;), et ensuite, il faut montrer que cette fronti ere est en fait maximale. Supposons que G soit de type ni, est que le premier moment jj = P jgj(g) de la mesure par rapport a une jauge principale (par example, une norme du mot) j j soit ni. La distance sur G associ ee a la jauge j j G est d eenie comme d(g 1 ; g 2) = jg ?1 1 g 2 j. En utilisant la th eorie entropique des marches al eatoires, on peut obtenir les deux crit eres g eom etriques suivants de maximalit e d'une-fronti ere (B;) en termes du comportement asymptotique des trajectoires (y n) de la marche al eatoire (G;). Rapellons que chaque-fronti ere (B;) se presente comme l'image bnd (G Z + ; P) de l'espace de trajectoires. Th eor eme 2. | Soit n : B ! G une famille d'applications telle que presque s^ urement d ? y n ; n (bnd y) = o(n) ; alors la fronti ere (B;) est maximale. Soit (g) = (g ?1) la mesure oppos ee a …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Poisson Formula for Groups with Hyperbolic Properties

The Poisson boundary of a group G with a probability measure μ on it is the space of ergodic components of the time shift in the path space of the associated random walk. Via a generalization of the classical Poisson formula it gives an integral representation of bounded μ-harmonic functions on G. In this paper we develop a new method of identifying the Poisson boundary based on entropy estimat...

متن کامل

A note on the Poisson boundary of lamplighter random walks

The main goal of this paper is to determine the Poisson boundary of lamplighter random walks over a general class of discrete groups Γ endowed with a “rich” boundary. The starting point is the Strip Criterion of identification of the Poisson boundary for random walks on discrete groups due to Kaimanovich [16]. A geometrical method for constructing the strip as a subset of the lamplighter group ...

متن کامل

NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4

In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...

متن کامل

A Theorem À La Fatou for the Square Root of Poisson Kernel in Δ-hyperbolic Spaces and Decay of Matrix Coefficients of Boundary Representations

In this note, we prove a theorem à la Fatou for the square root of Poisson Kernel in the context of quasi-convex cocompact discrete groups of isometries of δ-hyperbolic spaces. As a corollary we show that some matrix coefficients of boundary representations cannot satisfy the weak inequality of Harish-Chandra. Nevertheless, such matrix coefficients satisfy an inequality which can be viewed as a...

متن کامل

SOLVING LINEAR SIXTH-ORDER BOUNDARY VALUE PROBLEMS BY USING HYPERBOLIC UNIFORM SPLINE METHOD

In this paper, a numerical method is developed for solving a linear sixth order boundaryvalue problem (6VBP ) by using the hyperbolic uniform spline of order 3 (lower order). Thereis proved to be first-order convergent. Numerical results confirm the order of convergencepredicted by the analysis.  

متن کامل

Random Walks on Weakly Hyperbolic Groups

Let G be a countable group which acts by isometries on a separable, but not necessarily proper, Gromov hyperbolic space X. We say the action of G is weakly hyperbolic if G contains two independent hyperbolic isometries. We show that a random walk on such G converges to the Gromov boundary almost surely. We apply the convergence result to show linear progress and linear growth of translation len...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994